Primes in Elliptic Divisibility Sequences

نویسندگان

  • MANFRED EINSIEDLER
  • GRAHAM EVEREST
  • THOMAS WARD
چکیده

Morgan Ward pursued the study of elliptic divisibility sequences initiated by Lucas, and Chudnovsky and Chudnovsky suggested looking at elliptic divisibility sequences for prime appearance. The problem of prime appearance in these sequences is examined here from a theoretical and a practical viewpoint. We exhibit calculations, together with a heuristic argument, to suggest that these sequences contain only finitely many primes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primes in Divisibility Sequences

We give an overview of two important families of divisibility sequences: the Lehmer–Pierce family (which generalise the Mersenne sequence) and the elliptic divisibility sequences. Recent computational work is described, as well as some of the mathematics behind these sequences.

متن کامل

Algebraic Divisibility Sequences over Function Fields

In this note we study the existence of primes and of primitive divisors in function field analogues of classical divisibility sequences. Under various hypotheses, we prove that Lucas sequences and elliptic divisibility sequences over function fields defined over number fields contain infinitely many irreducible elements. We also prove that an elliptic divisibility sequence over a function field...

متن کامل

Prime powers in elliptic divisibility sequences

Certain elliptic divisibility sequences are shown to contain only finitely many prime power terms. In some cases the methods prove that only finitely many terms are divisible by a bounded number of distinct primes.

متن کامل

Terms in Elliptic Divisibility Sequences Divisible by Their Indices

Let D = (Dn)n≥1 be an elliptic divisibility sequence. We study the set S(D) of indices n satisfying n | Dn. In particular, given an index n ∈ S(D), we explain how to construct elements nd ∈ S(D), where d is either a prime divisor of Dn, or d is the product of the primes in an aliquot cycle for D. We also give bounds for the exceptional indices that are not constructed in this way.

متن کامل

On The Elliptic Divisibility Sequences over Finite Fields

In this work we study elliptic divisibility sequences over finite fields. Morgan Ward in [11, 12] gave arithmetic theory of elliptic divisibility sequences. We study elliptic divisibility sequences, equivalence of these sequences and singular elliptic divisibility sequences over finite fields Fp, p > 3 is a prime. Keywords—Elliptic divisibility sequences, equivalent sequences, singular sequence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001